

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido[methyl 2-(quinolin-8-yloxy- $\kappa^2 N, O$)acetate- κO]mercury(II)

Yu-Hong Wang,* Xue-Hua Zhu and Rui-Feng Song

School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China Correspondence e-mail: wangyuhong@mail.usts.edu.cn

Received 29 May 2012; accepted 12 June 2012

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.013 Å; R factor = 0.052; wR factor = 0.142; data-to-parameter ratio = 14.0.

In the neutral title complex, $[HgCl_2(C_{12}H_{11}NO_3)]$, the Hg^{II} ion is pentacoordinated by two Cl atoms, one N atom and two weakly coordinating O atoms from the methyl 2-(quinolin-8yloxy)acetate ligand. The coordination around the Hg^{II} ion may be described as highly distorted trigonal-bipyramidal. Centrosymmetric dimers are formed by an additional weak $Hg\cdots Cl$ interaction, leading to a distorted octahedral coordination geometry around the Hg^{II} ion.

Related literature

For the use of quinolin-8-yloxy acetic acid and its derivatives as ligands in transition metal complexes, see: Cheng *et al.* (2007); Song *et al.* (2004); Wang *et al.* (2005, 2008).

Å

Experimental

Crystal data	
$[HgCl_2(C_{12}H_{11}NO_3)]$	a = 7.2644 (4) Å
$M_r = 488.71$	b = 9.7607 (2) Å
Iriclinic, $P\overline{1}$	c = 10.8411 (6) Å

$\alpha = 71.317 \ (7)^{\circ}$	
$\beta = 75.453 \ (7)^{\circ}$	
$\gamma = 69.816 \ (8)^{\circ}$	
V = 674.87 (5) Å ³	
Z = 2	

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
$T_{\min} = 0.067, \ T_{\max} = 0.385$
$T_{\min} = 0.067, \ T_{\max} = 0.385$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 174 parameters $wR(F^2) = 0.142$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 3.58$ e Å $^{-3}$ 2432 reflections $\Delta \rho_{min} = -2.39$ e Å $^{-3}$

Table 1		
Selected	bond lengths (Å).	

Hg1-Cl1	2.340 (2)	Hg1-O1	2.746 (6)
Hg1-Cl2	2.350 (2)	Hg1-O3	2.876 (6)
Hg1-N1	2.463 (6)	Hg1-Cl1 ⁱ	3.204 (2)

Symmetry code: (i) -x + 1, -y, -z + 2.

Data collection: *CrystalClear* (Rigaku/MSC, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The work was supported by the Science and Technology Foundation of the Ministry of Development of China (2010-K6–8).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2385).

References

- Cheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738–15739.
- Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, R.-F., Wang, Y.-H. & Jiang, F. (2004). Acta Cryst. E60, m1695-m1696.
- Wang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.
- Wang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104–109.

Mo $K\alpha$ radiation $\mu = 11.80 \text{ mm}^{-1}$

 $0.50 \times 0.25 \times 0.10 \text{ mm}$

5090 measured reflections 2432 independent reflections

2330 reflections with $I > 2\sigma(I)$

T = 223 K

 $R_{\rm int} = 0.050$

supplementary materials

Acta Cryst. (2012). E68, m951 [doi:10.1107/S1600536812026591]

Dichlorido[methyl 2-(quinolin-8-yloxy- $\kappa^2 N$,O)acetate- κO]mercury(II)

Yu-Hong Wang, Xue-Hua Zhu and Rui-Feng Song

Comment

Quinolin-8-yloxy acetic acid and it's derivatives are well known ligands in transition metal coordination compounds (Cheng *et al.*, 2007; Song *et al.*, 2004; Wang *et al.*, 2005; Wang *et al.*, 2008). Some metal complexes with such ligands are being prepared because of their intriguing structural diversity and potential uses as functional materials (Cheng *et al.*, 2007; Song *et al.*, 2004; Wang *et al.*, 2005; Wang *et al.*, 2008). So, we prepared the title Hg^{II} complex with methyl-2-(quinoline-8-yloxy)-acetate ligand, (I).

In the title compound, the Hg^{II} atom is five-coordinated by two Cl atoms, one N atom and two O atoms from methyl-2-(quinoline-8-yloxy)-acetate ligand, forming a highly distorted trigonal bipyramidal geometry (Fig. 1). Hg—Cl bond lengths are 2.340 (2) and 2.350 (2) Å, and Hg—N bond lengths are 2.463 (6) Å. The weak coordinative Hg—O bond lengths are 2.746 (6) Å and 2.876 (6) Å. Angles around Hg are in a range of 56.55 (16)–153.41 (8)° (Table 1). If these are considered to be chemically signifcant interactions, two monoclear Hg complexes are formed into the centrosymmetric dimers by weak Hg—Cl interactions (Fig. 1). So, the coordination around Hg atom can act as a distrorted octahedral geometry.

The molecular packing is controlled by these dimers and intermolecular π - π interactions; the quinoline rings are separated by 3.527 (1) and 3.813 (1) Å (Fig. 2).

Experimental

Quinolin-8-yloxy acetic acid (0.0203 g, 0.1 mmol), HgCl₂ (0.0272 g, 0.1 mmol), methanol (3 ml) and triethylamine (0.0101 g, 0.1 mmol) were placed in a thick Pyrex tube and heated to 130 C° for 5 days. After cooling at a rate of 5 C°/h to ambient temperature, yellow prismatic crystals were collected, washed with anhydrous ethanol, and dried at room temperature. The yield is 51% based on quinolin-8-yloxy acetic acid. Analysis found: C, 29.91; H, 2.30; N, 2.87%; calculated for $C_{12}H_{11}Cl_2HgNO_3$: C, 29.49; H, 2.27; N, 2.87%.

Refinement

H atoms were included in calculated positions and refined as riding, with C—H distances of 0.94 (aromatic), 0.98 (methylene) and 0.97 Å (methyl), and with U_{iso} (aromatic and ethyl) = $1.2U_{eq}$ (C) and U_{iso} (methylene) = $1.5U_{eq}$ (C).

Computing details

Data collection: *CrystalClear* (Rigaku/MSC, 2001); cell refinement: *CrystalClear* (Rigaku/MSC, 2001); data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids [symmetry codes: (i) 1 - x, -y, 2 - z]. The dashed line indicates the weak Hg···Cl interaction.

Figure 2

A view of intermolecular π - π interactions, interactions between the parallel quinoline rings of neighbouring complexes [symmetry codes: (i) 1 - *x*, 1 - *y*, 2 - *z*; (ii) -*x*, 1 - *y*, 2 - *z*].

Dichlorido[methyl 2-(quinolin-8-yloxy-κ²N,O)acetate-κO]mercury(II)

Crystal data	
$[HgCl_2(C_{12}H_{11}NO_3)]$	Z = 2
$M_r = 488.71$	F(000) = 456
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.405 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
a = 7.2644 (4) Å	Cell parameters from 3438 reflections
b = 9.7607 (2) Å	$\theta = 3.0-27.5^{\circ}$
c = 10.8411 (6) Å	$\mu = 11.80 \text{ mm}^{-1}$
$\alpha = 71.317 (7)^{\circ}$	T = 223 K
$\beta = 75.453 \ (7)^{\circ}$	Prism, yellow
$\gamma = 69.816 \ (8)^{\circ}$	$0.50 \times 0.25 \times 0.10 \text{ mm}$
V = 674.87 (5) Å ³	

Data collection

Rigaku Saturn diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 14.63 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{\min} = 0.067, T_{\max} = 0.385$	5090 measured reflections 2432 independent reflections 2330 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -8 \rightarrow 8$ $k = -11 \rightarrow 9$ $l = -13 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.142$ S = 1.07 2432 reflections 174 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.114P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 3.58$ e Å ⁻³ $\Delta\rho_{min} = -2.39$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Hg1	0.48080 (4)	0.17195 (3)	0.82524 (2)	0.0283 (2)	
Cl1	0.7584 (4)	0.0079 (3)	0.9214 (2)	0.0343 (5)	
Cl2	0.2251 (4)	0.2330 (3)	0.7032 (2)	0.0328 (5)	
01	0.5887 (9)	0.4276 (6)	0.6794 (5)	0.0267 (12)	
O2	0.9795 (10)	0.3004 (7)	0.4386 (6)	0.0293 (13)	
03	0.7782 (11)	0.1803 (7)	0.5930 (6)	0.0350 (15)	
N1	0.3624 (11)	0.3914 (8)	0.9197 (6)	0.0229 (14)	
C1	0.2572 (13)	0.3719 (9)	1.0411 (8)	0.0250 (17)	
H1	0.2485	0.2744	1.0883	0.030*	
C2	0.1591 (14)	0.4918 (11)	1.1008 (8)	0.0291 (19)	
H2	0.0929	0.4727	1.1882	0.035*	
C3	0.1596 (13)	0.6348 (10)	1.0327 (8)	0.0280 (18)	
H3	0.0892	0.7160	1.0707	0.034*	
C4	0.2680 (12)	0.6597 (9)	0.9034 (7)	0.0229 (16)	
C5	0.2793 (15)	0.8066 (10)	0.8262 (9)	0.032 (2)	
Н5	0.2102	0.8915	0.8595	0.038*	

C6	0.3906 (15)	0.8224 (9)	0.7043 (9)	0.0306 (19)	
H6	0.3995	0.9189	0.6541	0.037*	
C7	0.4920 (14)	0.6985 (10)	0.6522 (8)	0.0288 (19)	
H7	0.5649	0.7133	0.5665	0.035*	
C8	0.4873 (13)	0.5564 (9)	0.7230 (8)	0.0232 (16)	
С9	0.3727 (12)	0.5317 (9)	0.8506 (7)	0.0226 (16)	
C10	0.7341 (16)	0.4428 (10)	0.5679 (8)	0.030 (2)	
H10A	0.8339	0.4787	0.5842	0.037*	
H10B	0.6737	0.5164	0.4927	0.037*	
C11	0.8301 (13)	0.2914 (9)	0.5380 (7)	0.0221 (16)	
C12	1.0873 (14)	0.1595 (10)	0.3990 (9)	0.0313 (19)	
H12A	1.1489	0.0841	0.4717	0.047*	
H12B	1.1890	0.1780	0.3236	0.047*	
H12C	0.9953	0.1234	0.3756	0.047*	

Atomic displacement parameters (\mathring{A}^2)

	7.711	1 (7)	T 722	T 712	T 712	1.723
	U^{II}	U^{zz}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.0304 (3)	0.0247 (3)	0.0247 (3)	-0.00519 (19)	-0.00101 (17)	-0.00514 (17)
Cl1	0.0304 (12)	0.0320 (12)	0.0350 (11)	-0.0028 (10)	-0.0050 (9)	-0.0083 (9)
Cl2	0.0360 (13)	0.0344 (11)	0.0255 (10)	-0.0096 (10)	-0.0038 (9)	-0.0057 (8)
01	0.027 (3)	0.025 (3)	0.022 (3)	-0.011 (3)	0.017 (2)	-0.009 (2)
O2	0.030 (3)	0.025 (3)	0.028 (3)	-0.006 (3)	0.010 (3)	-0.012 (2)
O3	0.041 (4)	0.025 (3)	0.034 (3)	-0.013 (3)	0.014 (3)	-0.012 (2)
N1	0.027 (4)	0.023 (3)	0.019 (3)	-0.008 (3)	0.002 (3)	-0.009 (3)
C1	0.024 (4)	0.030 (4)	0.021 (4)	-0.007 (4)	0.000 (3)	-0.009 (3)
C2	0.029 (5)	0.039 (5)	0.019 (4)	-0.012 (4)	0.005 (4)	-0.012 (3)
C3	0.018 (4)	0.038 (5)	0.030 (4)	-0.005 (4)	0.003 (3)	-0.019 (4)
C4	0.020 (4)	0.024 (4)	0.022 (4)	-0.001 (3)	0.002 (3)	-0.011 (3)
C5	0.041 (6)	0.025 (4)	0.034 (4)	-0.012 (4)	0.000 (4)	-0.014 (4)
C6	0.034 (5)	0.017 (4)	0.034 (5)	-0.004 (4)	-0.003 (4)	-0.003 (3)
C7	0.035 (5)	0.028 (4)	0.022 (4)	-0.009 (4)	-0.002 (4)	-0.005 (3)
C8	0.021 (4)	0.020 (4)	0.024 (4)	-0.003 (3)	0.003 (3)	-0.009 (3)
C9	0.018 (4)	0.030 (4)	0.020 (3)	-0.006 (3)	-0.001 (3)	-0.009 (3)
C10	0.041 (6)	0.032 (5)	0.018 (4)	-0.015 (4)	0.010 (4)	-0.012 (3)
C11	0.023 (4)	0.024 (4)	0.019 (4)	-0.009 (3)	0.005 (3)	-0.008 (3)
C12	0.023 (5)	0.029 (5)	0.035 (5)	-0.002 (4)	0.011 (4)	-0.018 (4)

Geometric parameters (Å, °)

Hg1—Cl1	2.340 (2)	C3—C4	1.416 (12)	
Hg1—Cl2	2.350 (2)	C3—H3	0.9400	
Hg1—N1	2.463 (6)	C4—C9	1.432 (11)	
Hg1—O1	2.746 (6)	C4—C5	1.428 (12)	
Hg1—O3	2.876 (6)	C5—C6	1.357 (13)	
Hg1—Cl1 ⁱ	3.204 (2)	C5—H5	0.9400	
O1—C8	1.383 (10)	C6—C7	1.392 (13)	
O1—C10	1.396 (10)	C6—H6	0.9400	
O2—C11	1.329 (10)	C7—C8	1.361 (12)	
O2—C12	1.468 (10)	С7—Н7	0.9400	

0 0 011	1 105 (10)	G 0 G 0	
03—C11	1.195 (10)	C8—C9	1.418 (11)
N1C1	1.337 (11)	C10—C11	1.502 (12)
N1—C9	1.352 (11)	C10—H10A	0.9800
C1 - C2	1 405 (12)	C10—H10B	0 9800
	0.0400		0.9700
	0.9400	CI2—HI2A	0.9700
C2—C3	1.355 (14)	C12—H12B	0.9700
C2—H2	0.9400	C12—H12C	0.9700
Cl1—Hg1—Cl2	153.41 (8)	C3—C4—C5	122.3 (7)
Cl1—Hg1—N1	106.61 (17)	C9—C4—C5	119.5 (7)
C12 - Hg1 - N1	99 30 (17)	$C_{6} - C_{5} - C_{4}$	119 5 (8)
C_{12} Hg1 O_1	105.43(15)	C6 C5 H5	120.3
C12 + 11 + 01	103.43(13)		120.3
Cl2—Hg1—O1	91.75 (15)	C4—C5—H5	120.3
NI—HgI—OI	62.08 (19)	C5C6C7	121.3 (8)
Cl1—Hg1—O3	80.81 (15)	С5—С6—Н6	119.4
Cl2—Hg1—O3	92.53 (16)	С7—С6—Н6	119.4
N1—Hg1—O3	117.7 (2)	C8—C7—C6	121.2 (8)
01—Hg1—O3	56.55 (16)	С8—С7—Н7	119.4
C_{11} Hg1 $-C_{11}$ ⁱ	83 50 (8)	С6—С7—Н7	119.4
C_{12} Hg1 C_{111}	00.02(7)	C7 C8 O1	124.5(7)
N1 Up1 Cl1	90.92(7)	$C_{1}^{}C_{2}^{}C_{1$	124.3(7)
NI—HgI—CII	89.03 (10)	C/=C8=C9	120.5 (7)
Ol—Hgl—Cll ¹	151.64 (12)	01	115.1 (7)
O3—Hg1—Cl1 ⁱ	151.45 (13)	N1—C9—C8	120.7 (7)
C8—O1—C10	116.4 (6)	N1—C9—C4	121.2 (7)
C8—O1—Hg1	115.6 (4)	C8—C9—C4	118.0 (7)
C10-01-Hg1	128.0 (5)	O1—C10—C11	108.5 (7)
C11-02-C12	115.3 (7)	O1—C10—H10A	110.0
$C_{11} = O_{3} = H_{g1}$	1210(5)	C_{11} C_{10} H_{10A}	110.0
C1 N1 C0	121.0(3) 1101(7)	O1 C10 H10P	110.0
CI = NI = U I	119.1 (7)		110.0
CI—NI—Hgi	116.1 (5)	CII—CI0—HI0B	110.0
C9—N1—Hg1	124.1 (5)	H10A—C10—H10B	108.4
N1—C1—C2	122.4 (8)	O3—C11—O2	124.9 (8)
N1—C1—H1	118.8	O3—C11—C10	125.5 (8)
C2—C1—H1	118.8	O2-C11-C10	109.6 (7)
C3—C2—C1	120.2 (8)	O2—C12—H12A	109.5
C3—C2—H2	119.9	O2—C12—H12B	109.5
C1 - C2 - H2	119.9	H12A - C12 - H12B	109.5
$C_1 = C_2 = C_1$	119.9	$\begin{array}{c} 1112A - C12 - 1112D \\ 02 - C12 - H12C \end{array}$	109.5
$C_2 - C_3 - C_4$	110.0 (0)		109.5
С2—С3—Н3	120.6	H12A—C12—H12C	109.5
С4—С3—Н3	120.6	H12B—C12—H12C	109.5
C3—C4—C9	118.2 (7)		
Cl1—Hg1—O1—C8	-113.6 (5)	C3—C4—C5—C6	178.0 (9)
Cl2—Hg1—O1—C8	86.9 (5)	C9—C4—C5—C6	-0.6 (13)
N1—Hg1—O1—C8	-12.7(5)	C4—C5—C6—C7	0.9 (15)
03 - Hg1 - 01 - C8	178.8 (6)	C_{5}	-1.8(15)
$C11^{i}$ Hg1 $-$ O1 $C2$	-83(7)	C6-C7-C8 = 01	-1780(8)
$C_{11} = H_{21} = O_1 = O_1$	(1)	$C_{1} = C_{1} = C_{0} = C_{1}$	170.0(0)
CII—HgI—OI—CIU	05./(/)		2.2 (14)
Cl2—Hg1—O1—C10	-93.8 (7)	C10—O1—C8—C7	13.2 (13)

N1—Hg1—O1—C10	166.6 (8)	Hg1—O1—C8—C7	-167.4 (7)
O3—Hg1—O1—C10	-1.9 (7)	C10—O1—C8—C9	-167.0 (8)
Cl1 ⁱ —Hg1—O1—C10	171.0 (6)	Hg1-01-C8-C9	12.4 (9)
Cl1—Hg1—O3—C11	-110.2 (7)	C1—N1—C9—C8	178.2 (8)
Cl2—Hg1—O3—C11	95.7 (7)	Hg1—N1—C9—C8	-11.9 (11)
N1—Hg1—O3—C11	-6.1 (8)	C1—N1—C9—C4	-2.1 (11)
O1—Hg1—O3—C11	5.3 (6)	Hg1—N1—C9—C4	167.8 (6)
Cl1 ⁱ —Hg1—O3—C11	-167.7 (5)	C7—C8—C9—N1	177.9 (8)
Cl1—Hg1—N1—C1	-78.3 (6)	O1—C8—C9—N1	-1.9 (11)
Cl2—Hg1—N1—C1	95.7 (6)	C7—C8—C9—C4	-1.8 (12)
O1—Hg1—N1—C1	-177.3 (7)	O1—C8—C9—C4	178.4 (7)
O3—Hg1—N1—C1	-166.5 (5)	C3—C4—C9—N1	2.7 (12)
Cl1 ⁱ —Hg1—N1—C1	4.8 (6)	C5-C4-C9-N1	-178.7 (8)
Cl1—Hg1—N1—C9	111.5 (6)	C3—C4—C9—C8	-177.6 (8)
Cl2—Hg1—N1—C9	-74.5 (6)	C5—C4—C9—C8	1.0 (11)
O1—Hg1—N1—C9	12.5 (6)	C8—O1—C10—C11	178.6 (7)
O3—Hg1—N1—C9	23.4 (7)	Hg1-01-C10-C11	-0.7 (11)
Cl1 ⁱ —Hg1—N1—C9	-165.4 (6)	Hg1O3C11O2	173.0 (6)
C9—N1—C1—C2	-1.0 (12)	Hg1-O3-C11-C10	-8.8 (12)
Hg1—N1—C1—C2	-171.7 (7)	C12—O2—C11—O3	-1.6 (12)
N1—C1—C2—C3	3.6 (14)	C12-O2-C11-C10	179.9 (7)
C1—C2—C3—C4	-2.9 (13)	O1—C10—C11—O3	6.4 (13)
C2—C3—C4—C9	-0.1 (12)	O1-C10-C11-O2	-175.1 (7)
C2—C3—C4—C5	-178.7 (9)		

Symmetry code: (i) -x+1, -y, -z+2.